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Definition of temperature in equilibrium and nonequilibrium systems
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We combine the definition of temperature for a Hamiltonian dynamical system with the Hamiltonian rep-
resentation of a nonequilibrium isokinetic steady state to obtain an expression for the temperature away from
equilibrium. Results of numerical simulations, performed to assess the validity of this approach for color field
systems, are reported. A strong correlation between the kinetic temperature orthogonal to the color current and
the ratio of the averages of two given phase variables is observed.@S1063-651X~99!50101-3#

PACS number~s!: 05.70.Ln
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In a recent paper by Rugh@1#, a method of determining
the temperature in a Hamiltonian dynamical system was p
posed. It begins with the definition of the entropyS as the
~canonically invariant! weighted area of the energy surfaceV
@the level set of the HamiltonianH(q,p)#, under the assump
tion that the dynamical system is ergodic inV. Defining the
temperatureT(E) in the usual thermodynamic way throug

1

T~E!
5

dS

dE
, ~1!

Rugh defines the phase variable

C~G!5
]

]G
•S ]H/]G

~]H/]G!•~]H/]G! D for all G[~q,p!,

~2!

whose time average

lim
t→`

1

t E
0

t

dtC„G~t!…5
1

T~E!
~3!

equals the inverse of the thermodynamic temperatureT(E)
of the system with total energyE. The first numerical results
based on this definition of the temperature are beginning
appear@2#. From a physical viewpoint, the phase space
rivative with respect toG is not dimensionally consisten
therefore we define

]

]G
[S a

]

]q
,b

]

]pD5S a
]

]q1
,...,a

]

]qN
,b

]

]p1
,...,b

]

]pN
D ,

~4!

where the prefactorsa andb allow us to move to dimension
less units for both coordinates and momenta, and give us
flexibility to weight differently the momentum and coord
nate contributions. Consider ad-dimensional system ofN
particles of unit mass, subjected to conservative forces.
Hamiltonian is

H5
1

2 (
i 51

N

pi
21f~q1 ,...,qN!, ~5!
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wheref(q1 ,...,qN) is the total potential energy. Then, th
phase variableC takes the form

CE5

a2(
i 51

N
]2f

]qi
2 1b2dN
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N S ]f

]qi
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i 51

N
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2
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S a4 (
i , j 51

N
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i 51
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]qi
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i 51

N

pi
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~6!

where the subscriptE indicates that the system is at consta
energy. In the limita→0, CE reduces to

CE5
dN

(
i 51

N

pi
2

2
2

S (
i 51

N

pi
2D 5

dN22

(
i 51

N

pi
2

, ~7!

which misses the correct counting of the degrees of freed
Because of energy conservation, the numerator should h
been dN21. If the total linear momentum was also co
served, the numerator should have beendN2d21. Using
the information given by the limita→0, one may conclude
that the first term in Eq.~6! is orderO(1), while the second
term is orderO(N21). This is misleading, since the coeffi
cient of theN21 term is large fora'b and cannot be ne
glected for systems withN,1000.

In Fig. 1 we present the results obtained from const
energy, equilibrium, molecular dynamics simulations of tw
dimensional systems of soft spheres of diameters, with re-
duced densityr50.9, and interaction potential cutoff an
shift to zero atr 51.5s. We report both the approximat
temperatureT1 obtained from Eq.~3!, neglecting the second
R5 ©1999 The American Physical Society
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term in Eq.~6!, and the full resultT from CE , as functions
of the number of particles and of the weightw5a2, with
2219<a<1 andb51. We observe thatT1 approaches the
value of the kinetic temperature,TK52 from below, asN
grows, whileT approaches 2 from above. As a function ofw,
T is closer thanT1 to the correct value at largew while, for
small w, T tends to 2N/(N21) rather than toTK52, due to
the problem with counting degrees of freedom. We conclu
that the dynamic definition of temperature@Eqs.~3! and~6!#,
as well asT1 , yield the correct values for our equilibrium
systems in the thermodynamic limitN→`.

Consider the possibility of extending the dynamic defi
tion of temperature, given by Eqs.~2! and~3! to nonequilib-
rium stationary states. Indeed, it has recently been sh
that the Gaussian isokinetic~GIK! equations of motion for
systems, in which the forces are derivable from a potentiaf
can be written in Hamiltonian form@3#. This means that Eqs
~2! and ~3! can be used to define a temperature for su
nonequilibrium systems, despite the presence of the nonh
nomic constraint

K5(
i 51

N pi
2

2
5

dNT

2
5const, ~8!

whereK is the kinetic energy of ad-dimensional system ofN
particles with unit mass. For such a system in a color fiel«
@4#, the equations of motion for the canonical coordina
G[(q,p) can be obtained from the Hamiltonian

Hb~q,p!5
1

2
e~b11!f/2K(

i 51

N

p i
22Ke~b21!f/2K, ~9!

whereb is a parameter introduced for greater generality, a

FIG. 1. Temperatures calculated from Eqs.~3! and ~6! as a
function of the weightw5a2, and of the number of particlesN.
T1(N) is the temperature obtained from averaging only the fi
term in Eq.~6!, whereasT(N) is the average of the full expressio
CE .
e

-

n

h
lo-

s

d

f5f int1fext5f int2«(
i 51

N

cixi ~10!

is the total potential energy~including internal and externa
fields!. In fact, denoting the temporal variable byl, we get

d

dl
qi5e~b11!f/2Kp i , ~11a!

d

dl
p i5Fi

1

4K FbS (
i

pi
222K D

1S (
i

pi
212K D Ge~b21!f/2K, ~11b!

whereFi52]f/]q5Fint1«ci î is the total force on particle
i. Then, connecting canonical (p i) and physical (pi) mo-

menta by p ie
f/2K5pi , and rescaling the time asebf/2K̂

5dt/dl, we obtain

d

dt
qi5pi , ~12a!

d

dt
pi5Fi

1

4K FbS (
i

pi
222K D 1S (

i
pi

212K D G2api ,

~12b!

FIG. 2. Temperatures calculated from Eqs.~3! and ~16! as a
function of the weightw5a2, and of the number of particlesN. The
density isr50.9 and the kinetic temperature isTK52.0. As in Fig.
1, T1(N) is the approximate temperature obtained from averag
only the first term in Eq.~16!, whereasT(N) is the average of the
full expression.
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wherea is the thermostatting multiplier. Taking initial con
ditions that satisfy the isokinetic constraint, Eq.~12b! re-
duces to the usual GIK equation of motion for the physi
momentum: dpi /dt5Fi2api , which then preserves th
constraint @Eq. ~8!#. This model reduces to an isokinet
equilibrium one whenfext50.

Choosingb50, so that the canonical and physical tim
variables are the same, we now differentiateHb50 to con-

struct the functionC of Eq. ~2!. The gradient yields
f-
e

u
si

e
d
f

d
ha
g
a

s,
fo
l

]

]G
Hb50~q,p!5F ]f

]qi

a

2 S ef/K̂

2K̂
(
i 51

N

p i
211D

3e2f/2K̂,bef/2K̂p iG ~13!

at all times. Differentiating once more, and using initial co
ditions and parameters that lead to the GIK equations,
substituting into Eq.~2!, we get
lue of
CK5ef/2K

a2e2f/K(
i 51

N
]2f

]q2 1b2dN
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i 51

N S ]f
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D 2

12b2K

22ef/2K

a4e22f/K (
i , j 51

N S ]f

]qi
•

]2f

]qi]qj
•

]f

]qj
D12a2b2e2f/K(

i 51

N S ]f

]qi
D 2

12b4K

Fa2e2f/K(
i 51
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]qi
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12b2KG2 ,

~14!

where the subscriptK indicates that the system is at constant kinetic energy. If we consider the limita→0, and substitute the
first term of Eq.~14! into Eq. ~3!, we get

1

T1
5^ef/2K&

1

TK
, ~15!

whereTK52K/dN is the fixed value of the kinetic temperature. Now, the zero of the potential cannot influence the va
the temperature, hence, we may replacef by w5f2f0 , with f052K ln^ef/2K&, obtaining^ew/2K&51 and 1/T151/TK .
Also, CK can be written as

CK5ew/2K

a82e2w/K(
i 51

N
]2f

]qi
2 1b2dN
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i 51

N S ]f
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where we have introduced the modified weighta8
5ae2f0/2K. Therefore, in the numerical simulations, it su
fices to choose values ofa andb, and to calculate the averag
of the right-hand side~RHS! of Eq. ~14! andef/2K, in order
to obtain the results corresponding toa8.

In Fig. 2 we present the results obtained from GIK sim
lations of systems of two-dimensional soft spheres at den
r50.9 and zero color potentialfext. Again the weights are
obtained by settingb51 and varyinga. The results are very
similar in character to those obtained from the constant
ergy simulations described above, showing the same kin
convergence, both withN and withw to the desired value o
TK52.0.

If fextÞ0, the system evolves to a nonequilibrium stea
state with a nonzero average dissipation. Moreover, it
been shown that this system has a transition from homo
neous flow to a separated state, in which particles of e
color collect together and flow at a faster rate@5#. The value
of color field «s , for which the separation transition occur
depends on the density and on the system size, there
comparing systems with same« and differentN does not
-
ty

n-
of

y
s

e-
ch

re,

necessarily compare equivalent state points. Equation~16!,
combined with Eq.~3!, can now be used to define a nonequ
librium temperature. We calculated this temperature a
compared the results with those obtained by other me
~Fig. 3!.

At N556 anda251, the temperatureT, calculated using
Eqs.~3! and~16! is dominated by the potential contribution
The result 2.07~assuming errors of at least 1%! is rather
close to the fixed kinetic valueTK52.0, and to the orthogo
nal kinetic temperature, defined bySpi,y

2 5dNTy , which is
Ty51.994. ForN5224 anda251, the temperatureT is 1.98,
which is in even better agreement with the correspond
Ty51.966. AtN5896,T is 1.93, which is a little lower than
Ty51.954. We conclude that the temperature defined by
~16! agrees with the orthogonal part of the kinetic tempe
ture, i.e., the part that is unaffected by the streaming mot
It would appear that Eq.~16! is a reasonable starting poin
for a definition of the temperature away from equilibrium
During these simulations, the value ofTy appeared to be
strongly correlated to the quantity
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X5

K (
i 51

N

~]2f/]q2!L
K (

i 51

N

~ ]f/]qi!2L , ~17!

in a way that is quite robust to changes in the density, fie
and system size. Although this expression is similar to
first term in Eq.~16!, the ratio of averages should not equ
the average of the ratios in general and, at present, we
no theoretical justification for this observation. In Fig. 4, w

FIG. 3. Temperatures calculated from Eq.~16! as a function of
the weightw5a2, and of the number of particlesN. The density is
r50.9, the kinetic temperature isTK52.0, and«51.0. T1(N) is
the temperature obtained from averaging only the first term in
~16!, whereasT(N) is the average of the full expression. The a
rows on the RHS mark the average values of the kinetic temp
ture orthogonal to the flowTy , for the system sizes indicated.
m

,
e
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present a plot ofX against the orthogonal temperatureTy , as
obtained in our simulations; the straight line represents
relationX5Ty .
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FIG. 4. Correlation between the ratioX of two average quanti-
ties, and the orthogonal temperatureTy , which is close to the av-
erage of the ratio of the same quantities. The markedly outly
points are low density, high color field states, in which some se
ration of the two colored species may have occurred.
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